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ABSTRACT

" Optical scintillation on folded paths has been investi-
gated for the case of spherical waves and a plane mirror as
a folding target. A criterion for the statistical indepen-
dence of the two parts of the folded path was formulated,
utilizing the path integral technigue and the Von Karman
spaectrum. Employing the same approach, an expression
for the scintillation strength (the log-intensity vari-
ance) on folded paths has heen developed. It has been
shown that the scintillation strength on folded paths
can be expressed as a product of the one-way scintilla-~
tion strength and a function of the distance source-~detector f
in units of the cuter scale. The analytical prediction shows ‘

that the ratio of the log intensity variances on the folded
+6 £

paths to the one on the one-way path, goes from or

exact folding (the distance source-detector zero), to
12;L*6’;ian the detector is far away from //t e source. The

" theoretical predictions have been qprroborated by preliminary
field experxmcnts.“”r
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I. INTRODUCTION

Intensity fluctuations of visible or near-visible sources,
while viewed through the atmosphere (scintillation), play a
major role in a large variety of situations such as star
observations, optical communication channels, Lidars, power
transmission, etc. It has been understood for a very long
time that the stars' twinkling is caused by the inhomogeneity
of the atmospheric index of refraction. It is only in the
last thirty years, and especially since the first lasers were
built apout twenty vears ago, that this intuitive understand-
ing has been put intoc a rigorous quantitative model. Some
of the better known contributors to this progress are
Tatarski [1,2], Fried [3], Lutomirski and Yura [4], Ighimaru
{51, Lee and Harp [6], Clifford (7], Fante [8,9] and Dashen
[10]. As a rasult of their work and many others it is now
belieaved that in most of the situations the processes involved
are fairly well understood and the theoretical predictions
are reasonably close to experimental findings.

Among the problemg which are less understood and for which
existing theory either does not give reasonable predictions
or has not been confirmed experimentally, is the problem of
scintillation on folded paths. In general, this descriptive
name stands for a class of situations in which EM fields
propagate in the atmosphere from a source to a target and

back to a receiver (detector) in the vicinity of or at the

1




! same location of the source. Typical situations which belong
f to this class are optical radars, communication links (ground-
satellite/mirror-ground), remote monitoring of atmospheric
pollutants, and others.

The class of point-ahead problems such as pointer-tracker
{(with fast moving targets), power transmission from space to
earth (which follow a beacon signal from earth to space)
shares a major question with the previous class, that is to
say, the correlation between the two parts of the path.

In this paper we are concerned with scintillation caused

by propagation along a folded path when the target is a
specular reflector (either a plane mirror or retroreflector).
Trangition cases in which the two parts of the path are par-
tially correlated are included. To the best of our knowledge,
only a small number of works in the open literature address
this problem. We will compare the results of these works
with ours at the related parts of our paper.

In the second part of this paper (discussion) we describe
some accepted formulas, physical pictures and approximations,
which describe the atmospheric turbulence and the propagation
of EM fields in it. 1In the third part we develop an expression
for the correlation between the two parts of the path. 1In !
the fourth we give the expressions for the scintillation L
strength (the normalized variance of the log-intensity) for
a plane mirror and retroreflector targets. The fifth part
describes the experimental part of our work (system descrip-

tion and results), and a summnary constitutes the sixth part.

10
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A. THE SCALAR EQUATION OF PROPAGATION

The effect of the atmosphere on the EM fields propagation
manifests itself through the Maxwell equations. The atmos-
phere is considered to have no free charges (hence zero con-~
ductivity and unit magnetic permeability). It is also
assumed, based on experimental findings [8], that the time
scale of changes of the atmospheric index of refraction is
much longer than the time scale of the EM field fluctuations
in the visible and near visible band. This assumption allows
us to suppress the time dependent part of the EM field in
Maxwell's equations. Based on the above conditions, we find

that the vector equation for the EM field propagation is

v2E(r) + k%% (DE(m) = V(V-E(D) (II-1)

where:
k = w/c is the EM field wave number
n2(£) = ¢(r)
e = the dielectric constant

n = jindex of refraction.

It was found analytically {11,12] and confirmed in experi-

ments (13], that the depolarization of EM fields in the

11
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forward direction due to atmospheric turbulence (variations
in n(r)) is negligible. Thus the term, on the right hand
side of Eq. (II-1l) which represents the depolarization
(through mixed derivatives) can be neglected {8], and we get

the scalar equation of propagation

v2E(r) + k%n?(DE@ = o0 (I1-2)

B. ATMOSPHERIC TURBULENCE

As we can see from Eq. (II-2), the effect of the atmos-
phere on the EM field propagation is caused by the fluctua-
tions of the index of refraction. The index of refraction is
a very complicated function of the atmosgphere's constitutents
(aerosols, water vapour , etc.), the absorption coefficients
[14] (continuous and discrete), the temperature and the pres-
sure. Assuming the absorption is negligible (the wavelength
does not match any absorption line or band), the humidity
gradient is negligible, and the aerosols' contribution to
forward scattering is small, then the index of refraction
turns out to be a relatively simple real function of the

temperature and the pressure [15]

nr) = 1.0 + revp@ 0+ 2293078 (r -3
- A

where:

P = total pressure in millibars

12
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P—

-3
]

temperature in degrees Kelvin

>
]

wavelength in micrometers

Even though the expression for the index of refraction is
a simple one, it is impossible to get an exact solution for
the scalar equation because we cannot specify the values of
the temperature and pressure along the path. The only way
we can solve this equation is through the use of their sta-
tistical properties.

This approach leads us to'express the index of refraction

in the following form
n(g) = n, + n,(x) (I11-4)

where n, is the average value of n(r) along the path and
nl(g) is the spatial fluctuation. n, is found by replacing
P(r), T(x) in Eq. (II-4) by Pye TO respectively, and it
obviously cannot cause scintillation. In almost all works
about the effect of the atmospheric turbulence n, is taken
to be 1.

Since the pressure fluctuations (in the microscale) are
relatively small [16], the fluctuations of nl(g) are governed
by temperature fluctuations.

Due to their small order of magnitude (less than one
degree) , the main processes through which temperature inhomo-
geneities in the atmosphere dissipate, are convection on a

large scale and molecular dissipation on a very short scale.
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Therefore, temperature inhomogeneities (fluctuations in
space) which have scale size larger than a certain critical
value, are closely related to the velocity field within the
atmosphere.

Using this relationship between these fielda and the
Kolmogorov model of the velocity field, Tatarski [l] gave a
statistical description of the index of refraction fluctua-
tions in the atmosphere.

The Kolmogorov [17,18] model is based on the following
assumptions:

1. The fluid is incompressible.

2. The fluid is in a steady state.

3. The fluid is getting a constant power per - unit mass
from an outside source.

4. The Reynolds number of the flow (onset by the outside
source) is much greater than the critical Reynolds
number of the air.

5. Kinetic energy dissipation into heat can be done
only on a very short length scale.

Since the Reynolds number of the original laminar flow
is larger than the critical value for air, once the flow is
disturbed, it will turn into a turbulent flow with vortices
whose length scale is limited only by the dimensions of the
flow. This scale is called the outer scale of the turbulencs
(Lo). and in the surface layer it is usually taken to be the

height of the point above the ground.

14




If the Reynolds number of the flow within this vortex is

i
% | larger than the critical Reynolds number, the vortex will
% break down into smaller vortices. Since the Reynolds number
is proportional to the scale size of the flow, the formation
of smaller vortices reduces the local Reynolds number within
each vortex until it is smaller than the critical value, and
the flow is stabilized. The smallest vortex size is called
the "inner scale of the turbulence" (20).

In the literature about EM fields in the atmosphere,

these vortices are sometimes called eddies.

C. ENSEMBLE AVERAGING, STRUCTURE FUNCTION AND TURBULENCE
SPECTRUM

The averaging process through which we get the moments
of the EM field should be done over many points. Each solu-~
t%on of the scalar equation represents a différent n1(£)
field (the ensemble average). Since the n,(r) field has a
relatively short correlation length, averaging over the
distribution of nl(g) along a propagation path can replace
the ensemble average. In the literature the ensemble aver-
age is denoted by < >, We will use the same notation.

Assuming the n, (r) field is isotropic and stationary,
we can define the following functions.

l. The autocovariance (sometimes called correlation

or covariance) function

Bo(xy,xy) = <ny(r;)n;(x,y)> (I1I-5)




2. The structure function
= - 2 -
D, (X, +E,) <n, (x;) n,(r,) 17> (11~6)

3. The spectrum function ¢n(K)

\

+@ iR(x,-r,)
B,(xy.m) = J[fe,®e 172 ax

Since we asaumed isotropic turbulence, the last

equation can be written as
® Sin (Kp) 2
B (p) = 4n 0[ o, (K) TR Rl K© aK (11-7)

in the last four equations:

= gpatial vectors —

K = spatial frequency vector (of the nl(g)
field) '

k = I|E| {

Using the Kolmogorov model, the spectrum function is 3

given by

B Vo

o (K) = .033c§K‘11/3 for 2m/Ly < K < 2n/%;  (11-8)

16
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2
n

represents the strength of the turbulence and it is

This interval is called the inertial range. C

proportional to the variance of n, at a point ;. }
In most early works, this gpectrum was used (by way of
approximation) in the range 0 < K < «. This procedure as
pointed out by Yura {19], can cause serious deviation in the
outcome of some calculations. Thus a somewhat different
spectrum is now being used, namely the modified Von Karman

spectrum.

2

-(KL.)
.033c§ e O

o, (K) = (1I-9)
(&2 + -2 11/6

0 )

Hill and Clifford [20] showed that a high K values,
the ¢n(K) is not a decreasing function, but rather it in-
creases to a local maximum and then goes to zero as the

modified Vvon Karman spectrum.

D. APPROXIMATE FORMS OF THE SCALAR EQUATION
The most commonly used approximations for the scalar
equation are the Rytov (small or smooth perturbation) approxi-
mation, and the parabolic equation approximation. ;
The Rytov approximation is based on the perturbation f

theory and has one basic assumption:

|v lnEll << |v lnEOI (I11-10)




This restriction is equivalent to the assumption that the bean
can be scattered by turbulence eddies only once, which means
that it restricts the range of applicability of this approxi-
mation to weak turbulence levels.

starting with the scalar wave equation, and replacing n

by 1+n,, and E by exp(T), we get
2+ (qm? + K2 +np? = O
Taking T = T, + Tl and ni << an, we get
vor, + (V"fo) 2 124 9%n 4 (v,)% + 2(9T,) (V7)) + 2K?n, = 0
We can see that condition (II-10) is equivalent to
(VTll << lVTol

T
and that if e 0 u Eo is the vacuum solution of the scalar
equation, the last equation can be written as
921, + 29T,°9T, + 2x%n, = 0 (11-11)
1 0 1l 1l
which can he solved (VTO is known), for the moments of Tl'
Experimentally it was ¢ound [7] that the Rytov approxima-

tion is valid as long as

oi o a2 xV/ELVEE < (1I-12)

18
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where:

k = wave number,

L = distance of propagation, and

Ci = the turbulence strength.

The Markov approximation is based on the assumption that

(for an EM field which propagates along the x axis)

2

125 << j2ik 33 (11-13)
Ix

where

u = ul(x,y,z) = gé%%%t%} (I1-14)

As Tatarski showed [2], the condition (II-13) is equivalent
to the condition 1 << kzo which is almost always met in the
atmosphere (lo ~ lmm) for the visible band.

Inserting (II-14) in the scalar equation and using condi-
tion (II-1l3) gives the following equation, which is called
the parabolic equation

2ik 3§u(x. ) + Vzo ulx,z,) + 2k2nl(x,£°)u(x,£o) = 0 (II-15)

where Lo ig a vector in the y,z plane.

The physical meaning of condition (II-13) is that the

scattering due to the eddies, is primarily in the forward




direction [8]. Eq. (II-15) can be solved by using the Markov
approximation (2] or by path integral. Dashen, who was the
first to show that the parabolic equation could be solved

by the path integral technique, argues [10] that the con-

straints imposed on the solution of the parabolic equation by
both techniques are the same, and identical to the one imposed

by the parabolic equation.

E. PATH INTEGRALS AND THE SOLUTION OF THE PARABOLIC EQUATION
g In the forties, the path integral technique was developed
R.F. Feynman in an effort to use the principle of least
action as the basic principle of Quantum Mechanics. A good
description of the technique and its application in Quantum
Mechanics and a few other fields of physics can be found in a
textbook by Feynman and Hibbs {21]. The use of the technique
' in solving the parabolic equation is described in a report
by D.L. Palmer [22].
The use of the path integral technique in solving differ-
ential equations can be demonstrated by the following example H
(frea particle in a one dimension motion).
Applying the Shrodinger equation to this case gives us
‘5 2 .2
r -im i - :—xf (+ boundary conditions) (II-16)
.é ) where ¥ is the probability amplitude function.
; . We know that for a free particle in a one dimension

motion,

20




and the action integral is given by

| %
| s = J Ladt (11-17)

ta

Starting from Feynman's basic assumption, namely that

| the probability amplitude assigned to the ith path (connecting

poeints a,b) is

b
‘Pi(a,b) = a/ exp[is(a,b)/h]dli

where the integral is being carried out along the ith path.
Since the total probability amplitude is the sum of the

contributions from all possible paths, it is given by

y(a,b) = (D (paths) exp(is(a,b)/n] (II-18)

Comparing Egs. (II-16) and (II-18), we can see that the
solution of the differential aequation (II-16) can be found
by the use of the path integral technique, providing wa can

come up with the kernel of the differential equation, which
in our example was obvious.

In the case of the parabolic equation, the procedure is
; more elaborate, and since this is not the main topic of our

21
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work, we would rather merely quote the result in Section

{(I11.C) of this work.

F. SCINTILLATION AND SATURATION

Viewing a source of constant cutput through the atmos-
phere, we see that the intensity varies with time (scintil-
lates), just as in the case of stars twinkling.

Usually the scintillation strength is measured by the

variance of the normalized intensity

2

Oy <(I/I°) > - <I/I°> ;?;- 1l (II-19)
where:

I0 = <I>,

Since it was found that in weak turbulence, the log ampli-
tude of the EM field is a random variable with normal distri-
bution {2], the log of the normalized intensity is distributed
normally in this region. Hence it is useful to work with
the variable . = ln(I/Io) and to define the turbulence strength

by
9% = <2% - <> (II-20)

Defining AI = I-I,, we can see that if AI << IO' since
<AI> = O, th‘n

22
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2 = ln(I/Io) = ln[(AI-bIo)/IO]

AZ ~

= 1n(l+'i—0- = AI/IO

Thus Eq. (II-20) can be written as

2
2 2 2 <AL®>
or = <(AI/I°) > - <AI/IO> = —;7—- (II-21)
0

There are several models by which the scintillation can
be explained. The simplest model which was originally used
by Tatarski (1], describes the eddies in the atmosphere as
spherical lenses whose index of refraction differs from their

surroundings by An = n These lenses focus or defocus

1°
(depending on the n, values)} the rays onto the target plane.
It. was believed that this picture gives good approxima-
tion only in the weak turbulence region (not more than one
scattering event), until Yura [23] showed that it can be
applied to the strong turbulence region also, if we incor-
porate in this picture the notion of the transverse coherence
length (ro) and its effect on the focusing ability of the
eddies. Dui to focusing and defocusing of the beam while
propagating through the atmosphere, the transverse coherence
length of it is gradually reduced and therefore, the ability
of the eddies to focus the beam further, is reduced too.
Hence the growth of the scintillation strength is saturated

and it should roachla paximum.

23




o M il a S

Other models which are used, either in detailed calcula~-
tions or in qualitative explanations, are the phase screen
model [6] and the scattering model {24]. The first describes
the effect of the atmosphere on the beam as a distortion of
the phase front due to different optical paths in the turbu-
lence. 1In turn, the distorted phase front will produce an
interference pattern in the target plane. The second views
the EM fields at the target plane as the sum of fields which
were scattered at small angles by off-axis eddies and the direct
(unscattered) field.

Since in all models, the scintillation strength depends
on the turbulence strength (density and effectiveness of the
eddies) and the total number of focusing or scattering events
along the propagation path, it is found very frequently in
the literature that the integrated turbulence strength (the
effective turbulence strength) is given by the Rytov param-
eter which was defined in Eq. (II-12). Sometimes it is
denoted by 8 or Ope

It wag found experimentally [7] that in the weak turbu-

lance region (also called the Rytov region), in which the

2

« goes up to 0.3. As

intensity digtribution is log normal, o
c: grows beyond this value, the intensity distribution is
close to the K distribution [25], the scintillation strength
reaches a maximum [26] and starts to decrease. As ci grows
further, the intensity distribution is best described by the
exponential distribution [10,27] and normalized intensity

variance approaches 1.

24
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IITI. STATISTICAL DEPENDENCE OF THE TWO
PARTS OF THE FOLDED PATH

A. PREVIOUS WORKS

As we mentioned in the first chapter of this work, the
question of whether the two parts of the folded path are
statistically independent, is a basic one when we try to
describe the statistical behaviour of the EM field which
propagates along it. Once we can assume statistical indepen-
dence, we can treat the two parts separately, applying the
well known results for the one-way propagation to each of
them. Since our main object is the scintillation along a
folded path, with a special emphasis on short distances be-
tween the source and the detector, the first subject of our
analysis is to try to define a critérion for the statistical
dependence between the two parts.

Among the works that we were able to find in the litera-
ture, which analyze the folded path question, socme like the
theoretical work by Yura (28] and the experimental work by
Ben-Simon et al., [29], assume statistical independence of

the two parts. Yura gives the condition for independence as

a > Ds, Dd

where d is the distance source-detector and Ds, Dd are the

aperture diameters of the source and the detector respectively.

Since in Yura's paper the target is diffusive (volume of




air molecules) and the reflected beam is totally incoherent,
we cannot apply this result to our case (specular target).

In other werks [30,31,32] the question of the indepen-
dence of the two parts is related to the wavefront tilt or
angle of arrival (A0A) fluctuations which depends on the large
scale eddies., Since we are concerned with scintillation
which is caused primarily by the small scale eddies, we can-
not use their results.

Before we continue our analysis, we would like to mention
without going into detailed explanation, that the usual cri-
terion for independence between two diverging paths (their
end points should be separated by a few isoplanatic patches),
cannot be applied in our case, due to the fact that in a folded
path case certain parts of it (near the target) might be very
close and certainly correlated to some degree. As we will
see later, this correlation affects the scintillation and

we cannot ignore it.

B. THE EXPRESSION FOR THE PHASE VARIANCE

We start our analysis with the effect of the atmospheric
turbulence on the phase of the propagating EM field.

The phase fluctuations (S) relative to the vacuum value,
due to the non-uniform medium, are given by the integral

along the optical path.

L
s = k | n, (x)dx (II1-1)
0
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Since <nl(x)> = 0

L L
<g» = <k [ pylx)ax> = K [ <njx)>ax
0 0

The variance of the phase fluctuation is

0: = <Sz> - <s>2 = <SZ>

and

L L
2 = <(x [ myax)lk [ mplxtyax')>
0 0

2 L L
= x° [ ax dx'<n, (x)ny (x7)>
0 0

2 , L L
? = x? [ ax | ax'B_ (x. x")
0 0

gsince in the Kolmogerov model, Bn(x,x') =

y = |x-x'| and it is the same frnction reg

origin of ¥, <sz> can be approximated by

L/2

ardless of the

= 0

(111-2)

Bn(y) where

(X11-3)

i s = ¥ B indy
; -L/2
b
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provided L >> y where y is the range at which

Bn(y) << B, (0).
As we can ses from Eq. (III-2), the wvariance of the phase
is related directly to the field of the index of refraction.

This is the reason we chose to utilize the phase variance in

the criterion for statistical dependence/independence baetween
the two parts of the folded path.
In this part of the work we chose to work with an infinite

|
k } plane mirror as a folding target for two reasons:

1. It is easy to compare the case of a folded vath (with
a plane nmirror) whan the angle between the two parts
of the path is 28, to the case of a straight path
(26 = 1) (see Fig. l). There is no discontinuity of
the rays and there are no singular points at the target,
as in the case of the corner cube.

2, When an infinite, or at least very large mirror is used,

! we do not have to take into account the possibility

s that part of the beam will not be reflected. Thus at
this stage, we can neglect the effect of beam wander.

C. THE RELATIONSHIPS BETWEEN THE MEANS OF THE EM FIELD IN

, VACUUM, THE EM FIELD IN A NON-UNIFORM MEDIUM, AND VALUES
t OF THE PHASE VARIANCES

; Following Dashen [10], we can write an expression for ¢
(where E = Re(ec) at a point (L,r) due to a point source at
(0,50). This analytical signal is the solution of the para-
bolic equation [22] and it is given by

28
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©e(0,£4,L,x) = gk /D (paths)

L
« explik | [3(z' (x))%-n, (z+e x) lax}  (III-4)

where:

dr (x)
L=

ey = unit vector along x axis.

From Eq. (IIl-4) we can get the expression for the analytical

gsignal of the vacuum field by setting n, = 0. Thus we get

a°(o,£°,L,£) = gk fD(paths)

. L
x exp(3 [ (' (x)]%x) (111-5)
0

Taking the ensemble average of Eq. (III-4) we get
<g> = <§k JD(paths) > (1I1-6)

ik (¢ 2 L
x exp{3 o; [£'(x)]“dx - ik 0[ n, (£ (x)+e x]dx}

L
= %k /D(paths) x cxp{%? o[ [g'(x)]zdx}

L
x <exp{ik [ n,(x(x)+e x)dx}>
0
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Using Eq. (III-1l) we can write
L P
<expl{ik | n, (£(x)+e x)dx}> = <exp(Ss;)>
o —-— —x

where Si = isP and SP is the phase fluctuation along the path
P. Since it is generally accepted {33,34] that the phase
fluctuation in the atmosphere is a Gaussian random variable
with zero mean, Si is also Gaussian with zero mean, and

therefore it satisfies the following formula(*)

Thus

(*)For Gaussian random variable o, with zero mean and with
standard deviation ¢

™ © 2
<e% = e®f(a,0)da = L eaexp[- @ .lda
—c:] /71?0 -QI ;:I
1 * 2a02-a2 e (02 2 ® (6-02 2
- [ expl2e32 jgq = SXRIT/D)  f ogyp-deTO) g,

/2Tg = 20 V210 ~c 20

= explo?/2] [ f£(a,0%)da = explo?/2]

where f(a,x) is the normal distribution function for mean = x.

30

PO

P e




i . P P, 2 :
A <e1.S > = expl- <{S >]

Using Eq. (I1I-2) we get

L
<exp{ik [ nl(g(x)+gxx)dx}> (111-7)
0

k2

L L
= exp{- % [ an[t(£(x>—£(x~>2+(x-x')zll/zlaxdx'}
0

Assuming that the optical paths in our case, which are the

main contributors to the path integral, satisfy

(e(x) - e(x"){ << lx - x'] (1I1I-8)

Eq. (III-7) can be approximated by

L
<exp{ik | nl(g(x)+gxx)dx}> (I11-9)
0

k2

L L
= oxp{—-i-oi OI Bn(x,x')dxdx'}

Inserting Egs. (£11-5), (£11-9), (£11-2) in Eq. (I1II-6), we
f get

| i 2
<B(°r£ocnc£)> = & (OIEO'LI;_)“P{" ‘T"l

(£1I-10)

—
oty

f
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2
L

propagation along a path of length L.

where <S_> is the variance of the phase fluctuations, due to

From Eq. (III-10) we see that the effact of the turbulent
atmosphere on the average of a propagating EM field, can be
expressed by the variance of the phase fluctuations along the
geometrical path.

It is obvious that in vacuum, apart from a phase shifs

due to the reflection, the fields E_ and E2L as described in

F
Fig. 1, are the same. We can ask ourselves what will be the

relationship between <ec_> and <€, >? Since in the case of

F L

<€,y > there is no folding at all, it is obvious that in this

L
case there is no statistical dependence (relating to the

folding) . Hence, the closer <g_> to <€y the less depen-

F
dence (statistical correlation between the two parts), we

] ' have.

Using Eq. (III-10) and the observation that up tc a phase

0
F

tical dependence batween the two parts of the folded path,

can be determined by the relationship between <sz> and <S§L

constant € = EgL' we come to the conclusion that the statis-

the closer their values are, the less the two partsg of the
folded path are correlated. Therefore, in the next steps we

. 2 2
will calculate 52L and SF

(we omitted the angular brackets
for the sake of convenience), compare their values, and formu-
late a criterion for statigtical independence.
Before we go to the next step of the analysis, we have
to evaluate the effect of the constraint which was formulated

in Eq. (III-8), on the applicability of our approach.
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Figure 1.

Mirrcr

The reflected (folded path) and transmitted
EM fields at distance 2L from a point source.




"Since the point (x,r(x)) is a point on the optical path
through the turbulent medium (which is given by the normals

to the wavefronts), the constraint (III-8) is equivalent to

dr (x)
|l <« 1

which means that the normals to the wavefronts are almost
parallel to the x axis, which in turn means that only small
angles cof scattering are allowed. This constraint is the
same as the one for the utilization of the parabolic equa-
tion [8,10) (Eq. (II-13)), and both are met for almost all
conceivable conditions.
D. THE VALUE OF S%L IN TERMS OF Si, FOR THE VON KARMAN
SPECTRUM

From Eq. (III-2) we can write

2 2 L L ] ]
s; = k 0[ dxof dx' B (|x-x'[)

and

2 2 2L w . .
Sy, ~ k 0] ax 0] ax' B (|x-x'])

Working on both integrals and using the transformation

+
Zz ™ X=-x"' L}-l = b

34

M, o

B Byt A B et e

—

e —




ysx+x' X_'z'_ing
1

X, X'
J(—Y'Lz—) = 3

L. 2L.-2 2Li+z

2 kz 1 b & 0
s = =i [ dz B (|z])dy+ [ dz | B, (|z])ay}
i 0 4 Li -2
2 Ly 0
= _z.{oj dz Bn(lz\)(ZLi-Zz) + » [ az Bn(lzl)(zninz)
i

where I..i is either L or 2L.

Taking z -+ -z in the second term, we get
2 2 1
s = 2x° [ (- z?Bn(z)dz

Inserting the explicit forms of Bn(x) {2] and the Vvon Karman

spectrum for ¢, (K)
® Sin (Kx) .2
B (x) = dn o[ 6, (Ko %) 12,(‘ K°aK

. 2
.033 Cn(x)

¢0p(Kex) = =3 T TI/E
" (R +Ly")

Assuning Ci(x) = constant and taking y = KLO, we get
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L./L
i’™o (L,/L,~2)
s2 = a J dz —i-2

IQ dy y Sin(z;)
i 0 z 0 (
. yo+1)

where:

3 2

A = .033 22 7 k2 ¢? L¥/3

2
n 1-"o

and z2 = x/Lo.

Using formula 2.3(11) of Ref. [35] we get

Li/LO
2 - _ 1/3
SLi Ay 0[ dz (L;/Ly-2) 27" °K, ,5(2)
where:
A, = .033 273 13222 Lg/3/r(ll/6)
and .4 (z) = Modified Bessel function of the third
1/3 kind.

Solving the integral in Eq. (III-1ll) (detailed solution

is given in Appendix A), gives for (Li/Lo) >> 1

5 Alwl/zr(S/S)
SL = zm (Li/Lo) (II11-12)

which is the same as the expression which is given by Tatarski
[2]. Thus we can see that for large (Li/Lo), sii is approxi-

mately linear in L, and

i




= 2 -
Sy, = 25¢ (I11-13)

2
F

E. THE EXPRESSION FOR $
The geometry of the folded path and the notations which
we use in this section are described in Figure 2. We assume
that the mirror is large enough so that:
1. Diffraction effects can be neglected.
2. There are no fluctuations in the amount of energy being
intercepted by it.
We also assume that the field at the point D (EF) can be
found by the path integral technique, using SMD as the geo~
metrical optics path. It should be pointed out that since

the calculation of the E_, value by the path integral assumes

F

dr (x)
|—:3§——| << 1 (scattering at small angles)

the application of the technique to this type of path might
be questionable, for the reason that it includes one point (M)
at which the above condition is certainly not satisfied.
Oour justification for the use of the path integral tech-
nique along this type of path, is based upon two arguments;
1. In the case of fields propagating in vacuum, we know
that apart from a phase constant, ED = EZL' Therefore,
wa can use the path integral technique (Eq. (III-5))
along the path SMD by excluding the point M from the

integration.
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Figure 2.

The geometry and notations of the folded
path case. M = a plane mirror; S = a point
source; D = detector. The d:.stances SM and
DM are of length L.
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2. If the results of our analysis in the two extreme

cases;
a. 6 =0
b. & +» 1/4

match the results which are obtained in other ways,

dar (x)

the fact that at the point M, is infinite, has

no effect on the applicability of the path integral
technique to our case.

At the end of this section we will discuss the second

argument.

As we saw in Section III.C, in order to find EF we have

to calculate Sg by

s2 = %% [/ axax' B_(|x-x'])
SMD

where the integration is along the line SMD. Thus

S, = k° [ dwdx' B_(!x-x'|) + kx° [ dxdx' B_(|x-x'|)
F 0 n L 7

, L 2L , 2L
+k% [ ax [ dx' B (Jx-x']) +k° [ ax
0 L L

L
x oj ax' B (|x-x'])




; where integration on the interval 0,L means integration along
:’ SM, and on the interval L,2L means integration along MD.
In integrals I3 and 14, x' is the distance of the point

(y,xl) from the point M along the line MD, and the notation

|x - x'| stands for the actual distance retween the points,
which is denoted by P.

Using the transformation y = x~L; y' = x'-L

L
2 '
I, = k of [ aydy' B (ly-y') = 1,

Since Bn(|x~x'|) is symmetric in x, x', I, = I,, and

# _ therefore

L
2 '
s2/2 = x 0} f axax' B_(|x=-x']) (III-14)

2 L 2L
+x% [ ax [ ax' B (|x-x'|) = I, +1I
0 L n

From Eq. (III-2)

The evaluation of 13

From Fig. 2 we can see that

st 4
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x' = (L—xl)/Cos(Ze); ax' = - dxl/Cos(2e)
(II1~16)
Yy = (L-xl)Tan(ze)
|x-%x'| = P = [(L-xl)z'rmz(ze) + (xl-x)zll/z (II1I-17)
Hence I3 can be written as
X L L
I Cos (28) 0[ dx [ oaxy BBl
2L Sin®

Applying the transformation (x,xl) + (P,a) and observing that

l.

_ P _Sin(20+a)
x = L Sin(26

= L - P Sin o Cot{29)

Xy
3x  3x
X, Xy P 30
| J(m—) = 3%, axl = P Cot(20)
3% Ga

For 0 < a < /2 - 8

L Sin(26)

0 i P < ool BB P

sin(26+a)

For ©/2-8 < & £ 7-28

L Sin(28)
OiPi in o Pz
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we get
2 7/2-8 Py
I3 = W{QI da OI PBn(P)dP
"-26 P,
+ de [ PB (P)aP)
n/2-8 0

= 7=-(26+a) in the second

=

Making the transformation 8

integral, we can see that it is equal to the first one. Thus

2x2 n/2-8 Py
d [ P_(Prap

I; = sInCz®) f
] 0
where

p. = -L.Sin(26)
1l Sin(28+a

Inserting the explicit forms of Bn(P) and the Von Karman

¢n(x), and assuming that ¢n(x,x) = ¢ﬂ(K), we get

n/2=-8 Yl ® -
I, = A | da [ " ay [ dz z2(z%+1) "1 8540 (yz)
0 0 0
where:
.033 &r k2 ¢ 13/3
A = SIn(2e)
42
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z = LOK y = P/Lo

- L Sin(26)
¥y L081n 28+a)

Using formula 2.3(11) of Ref. [35], we get

n/2-8 ¥

4/3
I, = & f do [ Qyy / Kl/3(y)
0 0
where:
.033 25/3 n3/2 k2 Ci Lg/3
S W Sin(26) T(11/6)
K = Modified Bessel function of the third kind

r = the gamma function

Comparing the last equation with Eq. (III-1l2) gives

22/3 Lq ,  T/2-0 IY1
3 Sin(20) 7%/ %1 (5/6)L % o 0

Inserting the last equation and Eq. (III-15) into Eq.

(I1I-14) gives

2

Sp

2
= 28701 + £(y4,0)]

or by using (III-13)

RO MR VRN




[ - e

s2 = S50+ £(yg,0)] (111-18)
where

A, 7n/2-8 Yy

2 4/3
£(yn,8) = = | da [ ¥y K, ;- (y)dy (I1I-19)

0 yo 0 0 1/3

and

22/3

A =
2 1721 (5/6)

L Sin(28)
Yo = L,

Y, = yo/Sin(26+a)

We solved Eq. (III-19) numerically and found out that for
small angles g, which is the case in most of the applications,
the £ dependence on 9§ is very weak, and therefore ;

f(yo,e) & f(yo).
Q The result of the numerical integration is described in

Figure 3, and we can see that

lim f(yo,e) = 1 (when 6 +~ 0, Yo * 0)
Yo’o

g-n/4

and therefore
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282, 6 =0
sf,(L,e) = (III~20)
SgL 8 = /4
2

These are the values of sF for the two extreme points of
the transition region (from exact folding to statistical
independence of the two parts of the folded path). 1In
previous works on the subject of scintillation on folded
paths, the authors assumed either exact folding or statistical
independence of the two parts of the folded paths. Thus, as
we pointed out in Section III-E, we can compare our results to

those calculated by others, only at these two points.

F. A CRITERION FOR STATISTICAL INDEPENDENCE

We have now enough information about the behaviour of
sg(L,e), in order to define a practical criterion for statis-
tical independence of the two parts of the folded path.
Strictly speaking, the two parts are independent only for
8 = n/4. Yet because f(yo,e) decreases very fast at small
Yo and has a very long tail (approaches slowly to zero), we
can define the region at which we have statistical indepen-
dence, as the region in which £(y,,8) < e l. From Figure 3

we saee that this criterion is met (for small o).

Yo 2 4




L Sin(28)
Yo L,

for small angles 8, Yy, can be written as

Yo = D/L0

where D is the distance source-detector. Thus we see that the
statistical independence between the two parts of the folded
path depends on the distance source-detector, expressed in
units of the outer scale.

As we said at the beginning of this section, one of the
justifications for employing the path integral technique in
our case, even though the main constraint on its utilization
is violated at the point M, is the observation that the re-
sults in the extreme cases (6 = 0; 8 = 7/4) match the results
which are obtained by other techniques.

For the case of 6 = 1/4 we got

2

2
SF(G = 1/4) SZL

which is the expected result based on physical arguments and
the results of Section III.D.

For the case of 6 = 0 we got

2 = 2 =
Sp(6 = 0) 285, 4ss

e —————————




L T

When a beam propagates back and forth along the same turbu-
lent medium, the phase fluctuation due to each path element
Ax is doubled. Thus comparing the random variable S in the
case of a path of length L (SL) to the case of a folded path

with 8 = 0 (SF), we get

which fits our results.




IV. SCINTILLATION STRENGTH FOR THE FOLDED PATH

A. THE RATIO BETWEEN THE SCINTILLATION STRENGTHS FOR THE
FOLDED PATH AND THE ONE WAY PATH

The log intensity variance for the Rytov region for
spherical waves is given by (1]

(IV-1)

o(r) = .5 k76 2 L1/6

In the strong turbulence region (exponential distribution
of I), the scintillation strength is given by the variance

of the normalized intensity (8]

2 .69
O’I = 1 + _T)—Wg (IV-Z)

(62

Comparing Egs. (III-12) and (IV-1l) we get for the Rytov

region
ol = 6.31 13852 = ak,1)1u¥%s?  (1v-3)
L [ L '¢] L .
" k Lo
or for a path of length 2L
2 5/6 .5/6 L2 -
oz(ZL) = A2 L SZL (Iv-4)

Prom Eq. (III-18) we get for the folded path

cf(r) = A 2"1/6 Ls/6 sgll + f(yo.e)l
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We can express the ratio between the folded path scintilla-

tion strength (of(F)) and the one way scintillation strength

(of(L)), in the weak turbulence region, by
2
g’ (F)
R = 45— = 2281+ £(y .01 (1v-5)
GE(L)

This ratio is the parameter which we are going to measure in
the experimental part, in order to verify our model. The

dependence of R on Yo (for small 9§) is described in Figure 4.

B. DISCUSSION AND OBSERVATIONS

1. The Range of R and the Saturation of Scintillation
Strength

As we can see from Eq. (IV-5) and the corresponding

figure, the range of R is

211/6 217/6

R_.
Therefore when we work with a system for which 6 is close to
zero or zero, we should expect the scintillation strength to
be about seven times greater than the scintillation strength
of the one-way path.

One should be aware of this large ratio especially
while designing a system or an experiment which is based on
the log-normal distribution. Since the region of the log-

normal distribution, as we mentioned in Chapter II, is given

by
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in the case of exact folding (6 = 0), the upper limit of
this region can be reached along relatively short distances
and/or relatively weak turbulence levels.

Oon the other hand, since saturation can be achieved easily
(relative to the one way case), it provides a way of carrying
out experiments in the saturated region without the difficul-
ties of using very long paths.

2. Comparison with Other Works

Smith [36,37] found that the scintillation strength
of a spherical wave which propagates along a folded path

(plane mirror) with 6 = 0 is

2,2

L 2
2 . 2 K2x (2L-
o (®) = ean’k? [ax [ e () sin (RX2L=X) 19k (1v-6)

Since he used the phase screen approach (6] and the Kolmogorov
spectrum, his results are applicable only in the Rytov region
and there is no dependence on the outer scale.

Using the Kolmogorov spectrum and the Mellin trans-
form (formula 6.5(15) of Ref. [35], we get from Eq. (IV-6)

L
A(F,0=0) = a; [ ax(Xi2L=x),5/6
0
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where

A, = .033(4)27/% r(-5/6) (-1) cos(sn/12)n? k7/8 2

Making the transformation
y = x/L

we get

ci(F, 8 =0 = A

1
3 p11/6 of cly[y(Z-y)]'r’/6 (IV~7)

It is well known that for the one way path of length

L [2])

. L 2
2 - 2.2 i n e (K (L-x%)
gy (L) 16 7k 0] dx 0[ K¢ (K) Sin®[=—pp—]dK

Following the same steps as in the previocus case, we get

L
2 - x(L-x),5/6
ol (L) A, 0] ax [===5==]

where

2 k7/6 CZ

A, = ,033 4(~1) T(-5/6) Cos(5n/12) = n
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and we can see that

A, = 2 a,
Taking y = x/L we get
2 1176 L 5/6
o,(L) = A, L [ ayly(l-y)] (Iv-8)
0

From (IV-7) and (IV-8) we get

1
5/6
R o b vy

R = =
b T
% (1 A, J ly-n1>Say
0

Taking y = 2x in the upper integral and observing that the
integrand in the lower integral is a symmetric function about

Yy = 1/2 we get :

1/2
o 2 4% 1 k(1013 S ax
0

R = =
1/2
A, 2 / [x(l-x)]s/sdx
0

1/6

2 A

217/6

which is exactly the same results as we got by using the path
integral technique.

It is easily seen that even though the results for
§ = 0 are the same (using the two techniques), Smith's paper

cannot give the values of R for 6 #¥ 0.
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Gamo et 2l., [(38] measured the value of R (for 6 = 0)
along a path of 274m at night (using a collimated beam HeNe
laser), to be 6.668. From their paper, it is not clear
whether the measurements of oi(L) and oi(F) were done
simultaneously.

3. The Weight Function in the Case of Exact Folding (6 = 0)

The relative contribution to the scintillation of
different points along the path is described by the weight
function.

From Egqs. (IV-7) and (IV-8) we can see that the weight
functions Wi(x) for spherical waves are:

For one way WL(x) = [x(l--X)ls/6

For the folded path WF(x) = [x(2-x)]s/6

The two fungtions are shown in Figure 5.

From Figure S5 we can see that in the case of the folded
path (86 = 0), the main contribution to the scintillation comes
from the vicinity of the mirror. 1In the case of the single
path,_ the main contribution is from the center of the path.
Since it is very unlikely that we can find the proper condi-
tions under which Ci(x) along an atmospheric path is constant,
we should be careful when we compare results from the two types

of path.
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4. The Effect of Path Folding on Aperture Averaging

The discussion and the evaluation of the scintillation
strength in previous sections assumed that we have a point
detector. The term point detector refers to a detector with
aperture diameter (Dd) smaller than a critical length (Do).

The aperture averaging can be explained qualitatively
in the following way [7,40]. Due to atmospheric turbulence,
the EM field at the detector plane has a certain spatial struc-
ture. This implies that the intensity (the modulus of the EM
field) has a spatial structure too. In order to measure the
full effect of the scintillation utilizing direct detection
of intensity, the detector aperture should be smaller than
the distance along which the intensity variations are negligi-
ble (Do), otherwise the detector will average different
intensities across its aperture. (In the language of Young
(40], the detector will filter out the high spatial frequen-
cies of the intensity's spatial variations.) The critical
length is given by

1

BI(D = BI(O) e

o)

where BI is the covariance function of the intensity at the

detector plane.

It is well known [1,2] that in very weak turbulence

L. = 1/2
Dy “4% = (L)

where )\ is wavelength and L is distance of propagation.
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In the case of strong turbulence, it is not clear
what is the exact value of Do (8]. The difficulty in obtain-
ing the D0 value arises from the difficulties in calculating
the fourth moment of the EM field. Since the transverse
correlatién length of the EM field (ro) (23] is a decreasing
function of the distance whilst ZF is an increasing one, at
a certain distance the field and the intensity spatial covari-
ance functions are dominated by ry. Thus, beyond certain
turbulence strength, D0 should be a function of Ty

Asg Yura [28] pointed out, the MCF of the EM field
is proporticnal to the phase variance.

It follows from the above mentioned arguments that,
as the phase variance incfeases the critical length Do
decreases. Since we found that in the case of the folded

path

2

. 2 _ 11/6
] 2 [1 + f(yo,e)] SL

F

it is obvious that while working with the folded path, we
should utilize detector apertures which are much smaller

than those which are used in the one way case.
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V. EXPERIMENTAL WORK

The main object of the experimental part is toc measure
the values of the function R(yo) and to compare them with the
analytical function which is given in Eq. (IV-=5).

In order to obtain the values of R(yo), we have to
measure simultaneously the values of the one-way scintillation
strength (Oi) and the scintillation strength for the folded
path (cg). These measurements should be done at several source-
detector distances (assuming that Lo is the same for all

measurements) .

A. THE EXPERIMENTAL SYSTEM
The experimental system consists of two major parts:
1) The optical system;
2) Data reduction system.

1. The Optical System

The optical system is described in Figures 6 and 7.
The main problems which we dealt with during the
planning and construction phases of our work were:
a) Selecting proper sources.
b) Making sure that the beams which propagate along the
one-way path and the folded path see the same turbulence.
c) Obtaining high quality optical elements with rela-
tively large apertures (within our budget and time

span constraints).
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-

Beam
Splitter

Chopper

O

Source 1

Source 2

Pcckels Cell Modulator

Polarizer

Partially Transmitting
Plane Mirror

-—eEmw e - mee -

Aperture Detector

Pigure 7. The optical system for 6 = 0.




The sources of our optical system should meet certain

requirements:

a)

b)

c)

d)

Low noise. They should have low values of intensity
variance in order not to obscure the intensity fluc-
tuations due to the atmospheric turbulence along
relatively short paths.

Operation in a pulsed mode or a simple way of
modulation. (This requirement evolves from the

way we were planning to subtract the background
noise.)

When passing through the same turbulence, the respec-
tive measured scintillation strengths should be highly
correlated.

Synchronized operation either in pulsed or modulated
modes of 6peration. This requirement makes it possible
to compare pairs of pulses. '

Technically it is easy to employ a GaAs laser at the

plane mirror end (the one-way source) in a pulsed mode, and

a mechanically chopped HeNe laser at the other end (folded

path source). These sources in these modes of operation,

were used before by the Electro-Optics group of the Physics

Department at the NPGS in previous experiments (41].

a. The Sources

It was found (assuming the sources' intensities

are normally distributed) that the normal intensity variances

of the sources were:
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1) HeNe laser (Spectra Physics Model 155) mechanically

chopped; S§ <5 x 1074

2) 12 elements array of GaAs; Si <9 x 1074

3) 8x8 elements of GaAs; Si <5 x107%. rThis laser
matrix which is manufactured by Laser Diode Labs, was
equipped with a Lucite parallelopiped rod mixing ele-
ment, in order to enhance its output uniformity. This
mixer was designed and built at the NPGS.

The conclusions from these measurements were:

1) In view of the expected levels of scintillation strength,
all three lasers can be incorporated as sources in the
optical system.

2) The 8x8 GaAs is a better (more stable) source than the
12 elements array GaAs. Therefore we decided to continue
the experiments with the 8x8 GaAs laser only. 1In the
following text, the term "GaAs laser" refers to this
laser.

The correlation coefficient between the HeNe and
the GaAs lasers were measured in a configuration which is
described in Figure 8. The GaAs in a pulsed mode was triggered
by the mechanical chopper via a pulse generator. In this way
we were able to get interlaced series of pulses with a con-
trolled time separation between them. For each laser we
measured the log-intensity variance (in a way which will be
described in Chapter V.B) and each pair of variances (one

for each laser) was compared. For each run we calculated the

o
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O Sy




HeNe laser

Chopper

Beam Splitter
(NPC Pellicle)

e ——— == D GaAs pulsed laser

Aperture -

D Gy W D S R M. P S W B R Gn S G —— V. G i - S w— "~ =P\ & o w— - -

Detector

Pigure 8. The configuration of the optical elements for
the measurement ¢of correlation coefficients
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statistical correlation coefficient between the two series

of variances' values. dne run of this part of the experiment
is described in Figure 9. In this particular run we gjot the
highest value of correlation coefficient (.973). 1In the other
runs the correlation coefficient values were much smaller.

As a result of this measurement, we decided to
replace the GaAs laser with a second CW HeNe laser (similar
to the first one), which is modulated by a Pockels cell
modulator. (We tried to use a second mechanical chopper in-
stead of the Pockel cell modulator but failed, because we were
unable to synchronize it with the first one.) We found that
the values of the two series of scintillation strengths (log-
intensity variances) of the two HeNe lasers were highly
correlated. A typical run with p = .996 is described in
Figure 10.

The measurements of the correlation coefficients
were carried out in the basement corridor of Spanagel Hall
at the NPGS. (Its structure and turbulent features are des-
cribed in Ref. 41.) The path length was 145 meters and the
time separation between the pulses of the two lasers was
250-350 us.

Based on the results of these experiments, we
decided to continue our experiments with the two modulated
CW HeNe lasers.

b. Frozen Atmosphere
As we mentioned in Chapter II of this paper, the

atmosphere can be considered frozen for time interxrvals of
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up to 1 ms. Since the round trip time of flight along the
folded path (when the target is up to 10 km from the source)
is less than 70 us, the atmosphere can be taken to be frozen.

In our experiments we employ two interlaced
series of pulses with a time separation (At) within each
pair of pulses. The time separation in our system is dic-
tated by the equipment which was available to us, and is not
less than 250 us.

We tested the assumption of frozen atmosphere
by measuring the correlation coefficients of two series of
log-intensity variances. The two series of pulses originated
from one source by using two series of slits on the mechani-
cal chopper for the HeNe laser, or by the use of the double
output signal of the pulse generator, for the GaAs laser.

For the "double pulse” HeNe laser experiment
with t = 270 ps, the correlation coefficient was p = .998.
This experiment which was carried out in "the corridoxr” shows i
that for time separation of up to 270 us, the atmosphere is
frozen.

This experiment served also as final checkup for
the equivalency of the two channels of the data reduction
system (see Chapter V.B).

c. Optical Elements

We originally planned on doing the experiments
with two targets; a plane mirror and a corner cube. 'The
original configuration of the optical system was dictated

by four major requirements:
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1. High quality elements. To maintain the phase relation
between different parts of the beam.

2. Large aperture elements. To intercept a large part
of the beam, in order to avoid the effect of different
transmitted/reflected intensities on the scintillation
strength.

3. The laser at the target end (the one~way tranamitter)
cannot be placed behind the target, hecause its beam
cannot be transmitted through the corner cube.

4. The beam-splitters in use should not cause an inter-
ference pattern.

The original configuration of the optical system
ig described in Figure 11.

The beam-splitters and the plane mirror target
are made out of large pieces of flat fused_ouartz, which were
coated with Al, to achieve the required reflectivities, at
the NPGS facilities. They were checked for flatness by
interferometric techniques. A full description of the testing
and coating procegsses is given in Refarence 42.

The interference patterns due to the double reflec-
tion from the two surfaces of the beam-splitters, can be
eliminated by applying an anti-reflection coating to one of
the surfaces. Since we were not able to use this technique
for various reasons, we used a different approach.

The beam~splitter at the detector end is located
very close to the detector (5-10 cm). Hence, by using thick

plates (taking apart the two secondary sources) we can eliminate
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this problem when the beam has a small angle of divergence.
This beam-splitter thickness is 1/4", it has an elliptical
shape (4 x 6"), and was coated to give a ratio of 1:2. The
beam-gplitter at the target end is a circular (6" diameter)
plate of 1/2" thickness. As we can see from Figure 11, its
interference pattern (at the detector) was eliminated by
applying the Al coating to the back surface and working with
a polarizer and angle of incidence equal to the Brewster
angle, to eliminate the reflection from the front surface.

In the course of the experiments, it was found
by observing the beams at the detector end, at night, that the
beam which originates at 52 is very homogeneous but the
homogeneity of the beam that originates at S1 suffers a great
degradation due to its double pass through the Quartz beam-
splitter at the target end. Sincewe use a back surface
reflection for the first beam (it passes this beam-splitter
twice too), the only explanation for the different effects on
the two beams, is that the inhomogeneities in the beam-
splitter material are of larger length scale than the diameter
of the beam near the laser output aperture.

Because of the beam quality degradation, we changed
the optical configuration from the one which is described in
FPigure 11, to the one which is described in Figure 6, uti-
lizing the circular beam-splitter which has 70% reflectivity
as the target mirror (with the coated surface facing the

detector end).
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As a result of the above mentioned change, we

abandoned our original plan to measure the R values with a

retroreflector as a target.

1)

2)

3)

2.

It is

group

d. Other Elements
The mechanical chopper is constructed out of circular
metal plate which is rotated at about 3000 rpm by an
electrical motor. There are 20 slits on the circum~
ference of the metal plate with a ratio of l:4 between
the slit's width and the opaque regions between them.
The chopper modulates the CW HeNe laser beam at a fre-
quency of about 1 kHz with “pulse" width (laser on) of
about 200 us. An LED (GaAs) and a detector which are
placed on opposite sides of the chopper plate, provide
a trigger signal at the same frequency as the laser
modulation for the whole system. Due to this arrange-
ment, we do not have to use a stabilized chopper.
The Pockels cell modulator is made by Coherent Asso-
ciates (Model 3003).
The diameter of the aperture in front of the detector
is 3 mm.

Data Reduction System

The data reduction system is described in Figure 12.
a modification of a system which was used by the EO

for measuring the scintillation of one source. This

system and its mode of operation are described in detail in

Refs.

(41, 42].
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(Silicon APD--GE Model 50HS)
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Figure 12. Data reduction system
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The elements which were added by us are:

1. The second channel (demodulator and log converter).
2. The electronic switch.

3. Clock.

4. Software (for the Nic-80).

The electronic switch (AD 7510D1) alternately sends
the signals from the parallel channels to the computer.

The clock is constructed of a set of pulse generators
which are triggered by the mechanical chopper's LED-detactor
pair. The time sequence of the signals is described in
Figure 13.

The change in the software enables us to store the
measured log-intensity values of the two series in different
storing spaces, for later calculation of the log-intensity
variances.

The main steps which are carried out in each channel
of the data reduction system, are the following:

1. The Demodulator samples the signal intensity and later
(between pulses) it samples the background intensity.
It subtracts the second from the first and sends this
difference to the log-converter.

2. The log-converter takes the log of the input signal and
sends it to the computer input via the electronic switch.

3. The computer samples the input signal, converts it from

analog to digital and adds one to the proper counter.

After sampling 16,384 pulses, it calculates the variance




Chopper's LED - Detector

) pair
J Main Trigger
—
Mechanically Modulated HeNe
Pockels Cell Modulated HeNe
l l Sampling line of Channel
l l I signal
Sampling line of Channel
I background
Output of Channel I
————— Combined Output
_— (After switch)
[ l l J J Sampling time of Nic-80
| I i | i |
— Time scale (ms)
0 .5 1.0 1.5 2.0

Pigure 13. Time sequence of the system's signals
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assuming that the distribution (after the conversion

i to log intensity was made by the log convertor) is
normal. The calculated value is printed on the
assigned printer.

Note: When we measured the sources' (lasers') normal
intensity variances, we bypassed the log con-
vertors, and used the average value of the
intensity distribution to normalize it.

After we completed the modifications, we tested the
two parallel channels for equality by comparing two series of
pulses which came from the same laser. The high correlation
coefficient between the variances of the two series (p = .998)
proves that the two channels are equal. The results of this

experiment are described in Figure 1l4.

‘ B. EXPERIMENTAL RESULTS AND DISCUSSION

The final experiment was carried out along a path of 62
meters on the lawns of the NPGS. The height of the optical
path above the ground was l.l meters.

Because of weather conditions, we made measurements on

February 27tn and on March 3rd and 4th, 1982. Throughout the

experiment, the weather was fair to clear. There were light i

winds (0-3 knots) from various directions, large portions of
the path were shaded by high trees, and most of the time the

grass was wet. The meteorological parameters which were taken

from the NPGS8 meteorological station (measured at the NPGS)

with other relevant parameters are summarized in Table I. '
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TABLE I

Information about the conditions under
which the final experiment was done

Distance Source R Day Time T°F RHS Weather
Detector (cm)

0 8.23 3-4-82 1237-1245 56 63 Clear
20 6.19 2-27~-82 1626-~1633 58 80 Scattered
clouds
40 6.12 3-3-82 1447-1454 56 67 Scattered
clouds
70 . 4.35 2-27-82 1239-1247 61 68 Clear
|
' 105 3.22 2-27-82 1053~1100 58 69 Scattered
; clouds

During all the runs, the wind was between 0-3 knots from

various directions.
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Figure 15 shows the experimental results, and the function
R(yo,e) which is given in Eq. (IV-5).

The R value of each experimental point is an average of
16 measurements. Each measurement is the ratio of the log-
intensity variances of the folded path (given distance source-~
detector) to the one way.

The Yo values of the experimental points were calculated

by
Yo,i = Di/Ly

where Di is the distance source-detector (for the folded path),
and Lo was taken as 20 cm, to given an optimal fit with the
analytical expression.

Even though we have only five experimental points, it
a;cms that the experimental results match the analytical
prediction quite well and confirm it.

The outer scale value (Lo ~ 20 cm) which gives an optimal
fit between the experimental results and the analytical pre-
diction, seems to be relatively low, for a path which is 1.1
meters above the ground in an unstable surface layer. For

a stable surface layer, this is a reasonable value (44].

e B e e
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Figure 15. A comparison of the measured R(y,) values (o)
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VI. SUMMARY

Optical scintillation along folded paths with different
angles between the two parts of the path, is a part of the
noise in many systems which measure the intensity of a re-
flected signal (e.g., a system which measures pollutant
concentrations in the atmosphere via their absorption).

In previous works the scintillation strength along these
types of paths was calculated by assuming either that the
two parts of the path are statistically independent or by
working with an "exact folding"” (8 = Q).

In this work we utilized the path integral technique and
the Von Karman spectrum, to formulate a criterion for the
statistical independence of the two parts (for spherical
waves and a plane mirror). This criterion was given in terms
of the distance source-detector expressed in the outer scale

unit, namely
Yo = D/L, 2 4

For the same case, we developed an analytical expression for
the ratio (R) of the log-intensity variances (folded path
to one way path) as a function of Yor in the Rytov region

Ryg) = 27810 + £y

where

8l




0 Yo = 2L (L = the distance source-~target)

f(yo)

0
o
g
o
jv
'S

1 Yo = 0 (exact £olding)

and showed that this prediction gives for the end points
(y0 = O,y0 = 2L) the same results which were predicted in
other papers which dealt only with these points. Our ap-
proach gives an analytical prediction for intermediate values
of Yoo which others do not.

In order to verify our predictions, we designed and put
together an experimental system by modifying an existing data-
reduction system, and constructing the optical system. This

system enabled us to measure simultaneously the scintillation

'strength along a one~way and a folded path, which to the
best of our knowledge, was never done before.
We measured R(yo) and found that
1) the maximum and the minimum values of R(yo) fit the
analytical prediction well.
2) the slope of the experimental value fits well the
predicted one, for an outer scale value LO = 20.
Based on these results, we think that our analytical

expression predicts well the scintillation strength on folded

paths.

82

T — TN L TE SRR

- e e




APPENDIX A
THE SOLUTION OF EQUATION (III-1l)

The right-hand side of Eq. (III-1l1)
Li/L0

s2 = a f dz(Li/Lo--z)zl/3 Ky s2(2)

is a difference of two integrals. The first one is

L;/L,
= AL, /L, 0[ dz z

1 1/3

1 K132

and the second one is

L./L
i’ ™0
f z4/3x
0

(z)

1 1/3

The first integral

Using formula 7.14(6) of Ref. [43], we get

~2/3_1/2
I1 = Al(Li/Lo)2 " T(S/G)Z[Kl/3(z)ﬂ_2/3(z)
Li/LO

VACLEVID N

where Hr(z) is the modified Struve function.
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Equations 7.2(12), 7.2(13) and 7.5(57) of Ref. [43] give
the following relationships.
I(z) = 3 (2/20%%/mir (merel) (a-2)
m=0
(A-3)

m
X(2) = ey (@) - I

where Ir(z) is the modified Bessel function of the first

kind.
Bo(z) = ] (/20 @me3/24nT me3/2)17t (A~4)
m=0 :

Por z -+ 0, formulae (A-2) and (A-4) can be approximated by

I(z) = (z/2)5/T (r+1) (A=5)

Ho(z) = (/2" o/ a/2en) ™ (a-6)

Ingserting (A-~3), (A-S) and (A-6) in Eq. (A-1l), and calcu-

lating the lower limit gives
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lim z[K (z)H (z) + H (z)K (z)]
220 1/3 -2/3 1/3 2/3

T oq 1

1
+ m[1_2/3(2)‘12/3(2) ]Hl/3 (2)2}

1/3

= 1/3Y2 1im{1(2z/2)"Y 31 (2/3) - (2/2) Y3 /1 (4/3))

z~0

< (z/2)Y3r 3721 (5/6)17F

r Lz/2) %31 (1/3) - (2/2) 23 /T (53]

x [(z/2)%3r 3/2)r (11/6) 171102

= ﬂ/31/2 lim{az-b 25/3 + czs/3 - dz3}
z+Q

where a, b, ¢ and 4 are constants.

Thus for z = 0
z[K1/3(2)H_2/3(2) + H1/3(2)K2/3(z)] = 0 (Aa-7)

For large z, formulae 7.13(7), 7.5(52), 7.5(63) and 7.13(4)

of Ref. [43] give, up to O(z-z).

Kee) = /20t %70 o 2 Gay e o)
r r-x

(a-8)
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|
z.-1/2 sy - .
Ho(z) = 21 - DO/3¥E) (55)71 4 g(z72)) (a-9)
#13 F(§+ r)
1
N-1 I'(m+ %)
- %[ (-1)® 2 (z/2) 201 4 o (,T~2N-1,,
m=0 T(r+3-m)

Using Egs. (A-8) and (A-9) in the upper limit of Eg. (A-1),

we get (z = Li/Lo >> 1)

z[Kl/3(z)H_2/3(z) + 31/3(z)K2/3(z)]

= (nz/2)Y2e7%( 1 + ggfi g;(Zz)'l + 00272

s

z -1/2

x (21 - TU3468) (2571 4 0(z7%)
/I r(-1/6
1 r(%) -5/3 -11/3

+ [+ %{%}é?l(zz)‘l + 0(z79)]

z_-1/2
ez F(lléG) -1 -2
X [—-——-——.[l - (zz) + 0(z )]

N r

e -2/3
- F[T73737 (z/2)

1 r(il/e) r(5/6 r(13se) _ r(ii/e -1
- 2+ G - TR ¢ TR - T (2

1/2

+ 0(z7%/3

)11

+ 0(z™%)} - e ?(az + (smaller powers of z)]

where a is a constant.
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Thus for z > 10, the last term is negligible and

z(K1/3(z)H_2/3(z) + H1/3(z)K2/3(z)] (A-10)

1,T(13/6) 17, =1 -2
1+ z{f737é7- -~ 1glz o+ 0(z"°)

Inserting Egs. (A-~7) and (A~10) in Eq. (A-l), we get for

L;/Ly > 10
1/2
A, (L, /L )7 1 (5/6)
R R g 1,I(13/6) _ 17 -1
I S273 {1+ 37575 15} (Ly/Lg)
-2
+ 00 /L)) (A-11)

The second integral

Using formula 7.14(3) of Ref. [43], we get

Li/Lg

3
K4/3(z)] o

4/

For the upper limit we make use of Eq. (A-8) and we get, up

to z'z(Li/L0 =z > 1)
23, 52 = GY3R8En » gl ea T + 0T

which for L /L, = z > 10 is almost zero (less than 107°).
For the lower limit, by use of Egs. (A-2) and (A-5)
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e L b ke s AT ke v A, et

e e e e oAt < et

, 4/3 Ll 4/3 8/3
lim 2z K (Z) = T—'_(T73T lim[Z /I‘(-1/3)-az ]
z+0 4/3 Sin(4r Z0
- T 21/3
Sin(4n -
i
;
| Thus for Li/L0 > 10
. Al T 21/3
I, = g/ It - (A-12)

We can now write the solution of Eq. (III-1ll)

172
(L,/Ly) 7" "T (5/6)
2 - i’"0 1.Ir(13/6) _ 17 -1
Sp, = A 5273 (1 + Tt - T8 (By/2g)
i . - 1/3
+ 01070 - st TR
1/2
A, T r(s/6) '
2 - 1 1.r(13/6) _ 17
51, Y V4] (Ly/bg) L+ G/ - T8 (a-13)
172
27 -1 -2
" ST/ NT LTS8 L/l -+ 0U(Ly/Tg) )
€ |
|
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APPENDIX B
NUMERICAL EVALUATION OF f(Yo,O)

The equation for f(yo,e) is

A w/2-8 Yy
- 2 4/3
£(yg,0) ¥y o do 0! Y/ UKy 3y dy
As we showed in Appendix A,
Yy Y
1 1
4/3 4/3
J ¥Ry s ay = -y TR, 4 (y)
0 1/3 4/3 0
1/3
, 4/3 m 2
lim K (y) =
y+0 b4 4/3 Y sin(dn/3) T (=1/3)
Thus
A n/2-0
- 2 _yi/3
£(yq0) 7, 0[ da [B-y,” "K, /5(y;)])
where
” 21/3

B = Sin(4n (-

or

A
£(y,,0) = ;%[B(wﬂ-e) - Ig(yq,0)]
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where
I (yy®) = ol“/z-e dos Y§/3K4/3(Y1’
and
Y, = yo/sin(29+a)
Taking
g = 20+a
we get
Igtyy9) = 291"/2 asyy/ *Ky/3try) * ﬂ,zl"/m S R
From
Y, = yo/Sin B
we get
Yo Cos B
ay, = -_;I;TB—-dB
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Therefore, for the first integral in I5

a8 _ |sin?s| W
Cos 8 Yo
and for the second integral
Sin § dy1
Cos
Since
2
lSin28| Sin‘s - y0 ,
. Cos B (l~sin2§;172 Yl(yl Yo I/_
I Ya y1/3K4 3(¥) ¥y yl/3x4 30
Irg® = ¥y [ o rp vy, [ g a
‘; ' Yo (¥" -vyyp) Y, (y" = yy)
! whiere
g Yo = L Sin(28)/Lo {(B-3-a)
Y, = Yo/Sin(2e) = I../L0 (B-3~b)
Y, = yO/Sin(w/Z-e) = yo/COs 6 = 2L iin 9 {(B=3~c)
0
f
Integrating by parts (making use of formula 7.14(3) of Ref.

(43] gives
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¥; 43k, (9

4/3 1 -1 a/3
/ -—1—'4—17" dy = =l[sec (y/y )y ' K (y)
y, YW -y Yo 0 4/3

Y;

i

Yo

+ Sec-l(Y/Yo)Y4/3K1/3(y)]

Yo

Since
sec”l(1) = 0,
sec l(y,/yy) = T/2-20,
Sec'l(yb/yo) = 9,

and

e WIS

has a finite value,

4/3 4/3
Ya Yy

- { glydy - [ glyldy
Yo Yo
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Hence ?
£( 8) = A—z-[B(‘lT/Z-G) + (w/2-9) 4/3g (y.) (B~5)
Yo' Yo Ya “473'Ya
4/3 Ya ¥p
+ 8y, K4/3 (yp) = f ey)dy -~ [ g(y)dy
Yo yo

This the exact form of f(yo,e).

From the definition of Ya (Eq. (B-3~b)) we can see that
in all practical situations, when the path of propagation is
parallel to the ground but not too high, we can take Y, >> 1.

Using formula 7.13(7) of Ref. [43]), we gat for y >> 1

N-1
4/3;, 1 -y f +m -m -N

= (/2025765 4 (ss/12¥ T + 0y™2))

By taking only the first two terms in the brackets, the error

4/3

in the value of y K4/3(y) is less than 1% for y > 10. Thus

for y > 10 we can take

4/3

3k, 50 (r/2)1/2y%/8e7Y (1 + (55/72)y71)

[ ]

(2'«)1/2115/6e~y

tA

Comparing this expression with B, we find
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4/3

B/1000 > vy K4/3(y) for v > 10

Since in Eq. (B-5), B and y:/3x4/3(ya) have the same

coefficient (n/2-8), we can approximate this eguation by

Y . M2 5 4/3

Ya yb

- [ glynay - [ gly)dy]
Yo Yo

Numerical Evaluation

The numerical evaluation of Eq. (B~6) was done in the
Computer Center of the NPGS, on an IBM 3033. The program is
written in FORTRAN 1V and is given at the end of this
appandix.

The important information about the program is listed
below.

1) The function f(yo,e) is evaluated with Yo, as the
independent variable. fhe step by which Yo is changed,
is determined by a constant (parameter) of the program.

2) The angle 6 is calculated from the equation
9 = % Sin'l(Li/yox

3) The parameter Ll which is given for each run, is the

distance source-mirror in units of the outer scale.

L

g = L/




4)

5)

The constants A2' B are constants of the program. Their
values, which were calculated from Egs. (III-~19) and

(B-1), are
A = .7934 B = 1.1250

The values of the modified Bessel function of the third
kind Kr(y), are calculated in different ways for the

two regiocns:

(a) 0.1 < y < 4

(b) 4 < vy

In region (a) we used formula 7.12(21 of Ref. [43].

K.ly) = f/ Cosh(rt)expl-y tosh(t)ldt
0
which can be written
0
R.(y) = [/ cosh(rt)exp(-y Cosh(t)]dt + R(r, &)

Using

Cosh(t) = (" +e™) > 3ot
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we get

ST~y

>

§ 0
| e
: Taking f
i ?
t Yy ax i
X = e, X, = e 7, =" = dt and Xg > 1, :
we get

P N R

1 f (xr-l+x(r-l) )e-xy/zdx

for r = 4/3; r-1=1/3 and ~(r+l) = =7/3.

Therefore f

R(4/3,%) < 5 J (x+1) @~ X¥/2ax
X
0 1
1,2 ~xq¥/2 g ~¥q¥/2
= §[§(x02/y). + ;9 1,
or
-xoy/2
R(4/3,xy) < T—g—i(xg + 1 + 2/¥)

for r = 1/3; r-1 = =2/3 and ~(x+l) = -4/3,

Therefore
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=t

]

¢ L RO E I S S it 10 0,

© -x.y/2
R(/3,x) < 5 | e ¥ 2ax = o O
X, Yy
Since in Eq. (B-6)

and we calculate f(yo,e) only for Yo 2 .1, setting

7

R(r,x,) < 107" gives

450 for r = 4/3, and

Al

X0

400 for r = 1/3.

Al

%0
Thus, we conclude that
6 .
K. (y) = [ Cosh(rt)exp(-y Cosh(t)]dt (B-8)
0
+ R(r,6)

where
R(r,t) < 1077 for r = 4/30r1/3, andy > .l.

We calculate Kr(y) for .1 < y < 4 by integrating Eq.

(B-8) numerically in steps of At = 10-3. For vy > 4,

we use formula 7.13(7) of Ref. [43]

§-1
k() = (r/27)Y/2e7Y( I Ly an ™o ™1 (8-9)
ms

B
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We take N = 10, and therefore for y > 4, the order of

the absolute error is less than
(n/8) 1/ 2g744"10 | ;1,8

6) For Y, OF Yy which are greater than 30, we use the

approximation

f gly)dy & [ g(y)dy (B~10)
Yo Yo

For y, > 30 we can write
1

Yy 30
[/ giyldy = J  g(y)dy + R(y,),
Yo Yo
where
1 1 3
R(Yl) = 30[ Sec” (Y/Yo)y4/ K1/3 (y)dy
41
4/3
< (n/2) Y 'Ky ,a(y)dy
301 1/3
4/3 1
= (n/2)[-y"' K ()] .
4/3 30

For y > 30, y‘/3

14/3(y) is a deacreasing function.




Thus

R(y;) < (1/2)(y, - 30)30*3k, 1 (30).

4

Taking 30 ¥y < 107,

Ia

R(30 < v, < 10Y) < (r/2)¥2104305/66730 . 1

7) The numerical integration of [g(y)dy is done in steps
. of Ay = .01.
Additional information concerning the numerical

integration can be learnt from the program itself.

Mo The Program
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